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Typical machine learning problem

Main ingredients :

observations object-label : (X1,Y1), (X2,Y2), ...
→ either given once and for all (batch learning), once at
a time (online learning), upon request... In this talk,
(X1,Y1), ..., (Xn,Yn) i.i.d.
a restricted set of predictors (fθ, θ ∈ Θ).
→ fθ(X ) meant to predict Y .
a criterion of success, R(θ) :
→ for example R(θ) = P(fθ(X ) 6= Y ) (classification
error). In this talk R(θ) = E[`(Y , fθ(X ))]. We want to
minimize R(θ). But note that it is unknown in practice.
an empirical proxy r(θ) for this criterion of success :
→ here r(θ) = 1

n

∑n
i=1 `(Yi , fθ(Xi)).
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Empirical risk minimization (ERM)

θ̂n = argmin
θ∈Θ

r(θ).

Theorem (Vapnik and Chervonenkis, in the 70’s)
Vapnik, V. (1998). Statistical Learning Theory, Springer.

Classification setting. Let dΘ denote the VC-dim. of Θ.

P

{
R(θ̂n) ≤ inf

θ∈Θ
R(θ) + 4

√
dΘ log(n + 1) + log(2)

n

+

√
log(2/ε)

2n

}
≥ 1− ε.
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ERM with linear classifiers

Table: Linear classifiers in
Rp : dΘ = p + 1. Source :
http ://mlpy.sourceforge.net/

Here dΘ = 3, n = 500. With
probability at least 90%,

R(θ̂n) ≤ inf
θ∈Θ

R(θ)+0.842.

With n = 5000 we would
have

R(θ̂n) ≤ inf
θ∈Θ

R(θ)+0.301.
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The PAC-Bayesian approach : origins

Idea : combine these tools with a prior π on Θ.

Shawe-Taylor, J. & Williamson, R. C. (1997). A PAC Analysis of a Bayesian Estimator. COLT’97.

McAllester, D. A. (1998). Some PAC-Bayesian Theorems. COLT’98.

“A PAC performance guarantee theorem applies to a broad class of experimental settings. A Bayesian

correctness theorem applies to only experimental settings consistent with the prior used in the algorithm.

However, in this restricted class of settings the Bayesian learning algorithm can be optimal and will

generally outperform PAC learning algorithms. (...) The PAC-Bayesian theorems and algorithms (...)

attempt to get the best of both PAC and Bayesian approaches by combining the ability to be tuned with

an informal prior with PAC guarantees that hold in all i.i.d experimental settings.”
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The PAC-Bayesian approach

EWA / pseudo-posterior / Gibbs estimator / ...

ρ̂λ(dθ) ∝ exp [−λr(θ)]π(dθ).

Theorem - for a bounded loss ` ≤ B .
Catoni, O. (2007). PAC-Bayesian Supervised Classification (The Thermodynamics of Statistical
Learning), volume 56 of Lecture Notes-Monograph Series, IMS.

∀λ > 0, P

{∫
Rdρ̂λ ≤ inf

ρ

[∫
Rdρ+

λB2

n
+

2K(ρ, π) + 2 log(2/ε)

λ

]}
≥ 1− ε.
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Another point of view

Bissiri, P., Holmes, C. and Walker, S. (2013). Fast learning Rates in Statistical Inference through
Aggregation. Preprint.

Provides decision theoretic reason to use

ρ̂λ(dθ) ∝ exp [−λr(θ)]π(dθ)

instead of

π(dθ|(X1,Y1), . . . , (Xn,Yn)) ∝ L(θ)π(dθ).

The likelihood L(θ) might be too complicated or not even
available ;
We might think it’s safer to replace it by a robust loss
function (Huber...).
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Bibliographical remarks

PAC-Bayesian bounds : many authors including Langford,
Seeger, Meir, Cesa-Bianchi, Li, Jiang, Tanner, Laviolette, sorry
for not being exhaustive, see the papers for more references !

Related to other works on aggregation : Barron, Vovk,
Rissanen, Abramovitch, Nemirovski, Yang, Zhang, Rigollet,
Lecué, Bellec, Suzuki...

Related work on misspecification in Bayesian
statistics : the “safe Bayes rule” of

Grünwald, P. D. & van Ommen, T. (2013). Inconsistency of Bayesian Inference for Misspecified
Linear Models, and a Proposal for Repairing It. Preprint.
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Reminder : pseudo-posterior

ρ̂λ(dθ) ∝ exp [−λr(θ)]π(dθ).

Depending on the setting, we have to
sample from ρ̂λ,
compute

∫
θρ̂λ(dθ).

How to do it ?
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A natural idea : MCMC methods for PAC-Bayes

Langevin Monte-Carlo :

Dalalyan, A. and Tsybakov, A. (2011). Sparse regression learning by aggregation and Langevin
Monte-Carlo. Journal of Computer and System Science.

Markov Chain Monte-Carlo :

Alquier, P. & Biau, G. (2013). Sparse Single-Index Model. Journal of Machine Learning Reseach.

Guedj, B. & Alquier, P. (2013). PAC-Bayesian Estimation and Prevision in Sparse Additive
Models. Electronic Journal of Statistics.

However : usually not possible to provide guarantees after a
finite number of steps. See however

Dalalyan, A. (2014). Theoretical Guarantees for Approximate Sampling from a Smooth and
Log-Concave Density. Preprint.
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Theoretical Analysis of VB Approximations

Variational Bayes methods

Idea from Bayesian statistics : approximate the posterior
distribution π(θ|x). We fix a convenient family of probability
distributions F and approximate the posterior by π̃(θ) :

π̃ = argmin
ρ∈F
K(ρ, π(·|x)).

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer.

F is either parametric or non-parametric. In the parametric
case, the problem boils down to an optimization problem :

F = {ρa, a ∈ Rd} 99K min
a∈Rd
K(ρa, π(·|x)).
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Example : Gaussian approximation

Table: The true posterior and the best Gaussian approximation.
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VB in PAC-Bayesian framework

ρ̂λ(dθ) ∝ exp [−λr(θ)]π(dθ).

Then :

K(ρa, ρ̂λ) =

∫
log
[
dρa
dπ

dπ
dρ̂

]
dρa

= λ

∫
r(θ)ρa(dθ) +K(ρa, π) + log

∫
exp[−λr ]dπ.

We put

ãλ = argmin
a∈A

[
λ

∫
r(θ)ρa(dθ) +K(ρa, π)

]
and ρ̃λ = ρâλ .
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A PAC-Bound for VB Approximation

Theorem
Alquier, P., Ridgway, J. & Chopin, N. (2015). On the Properties of Variational Approximations of
Gibbs Posteriors. Preprint.

∀λ > 0, P

{∫
Rdρ̃λ ≤ inf

a∈A

[∫
Rdρa+

λB2

n
+

2K(ρa, π) + 2 log(2/ε)

λ

]}
≥ 1− ε.

99K if the infimum on the right is small enough, VB
approximation is “at no cost”.

Pierre Alquier Properties of Variational Approximations



Introduction
Variational Approximations

A Short Introduction to Variational Bayes Methods
Theoretical Analysis of VB Approximations

A PAC-Bound for VB Approximation

Theorem
Alquier, P., Ridgway, J. & Chopin, N. (2015). On the Properties of Variational Approximations of
Gibbs Posteriors. Preprint.

∀λ > 0, P

{∫
Rdρ̃λ ≤ inf

a∈A

[∫
Rdρa+

λB2

n
+

2K(ρa, π) + 2 log(2/ε)

λ

]}
≥ 1− ε.

99K if the infimum on the right is small enough, VB
approximation is “at no cost”.

Pierre Alquier Properties of Variational Approximations



Introduction
Variational Approximations

A Short Introduction to Variational Bayes Methods
Theoretical Analysis of VB Approximations

Application to a linear classification problem

(X1,Y1), (X2,Y2), ..., (Xn,Yn) iid from P.

fθ(x) = 1(〈θ, x〉 ≥ 0), x , θ ∈ Rd .
R(θ) = P[Y 6= fθ(X )].
rn(θ) = 1

n

∑n
i=1 1[Yi 6= fθ(Xi)].

Gaussian prior π = N (0, ϑI ).
Gaussian approx. of the posterior :
F =

{
N (µ,Σ), µ ∈ Rd ,Σ s. pos. def.

}
.

Optimization criterion : Fλ(µ,Σ) =

λ

n

n∑
i=1

Φ

(
−Yi 〈Xi , µ〉√
〈Xi ,ΣXi〉

)
+
‖µ‖2

2ϑ
+

1
2

(
1
ϑ

tr(Σ)− log |Σ|
)
.
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Application of the main theorem

Corollary
Assume that, for ‖θ‖ = ‖θ′‖ = 1,
P(〈θ,X 〉 〈θ′,X 〉 < 0) ≤ c‖θ − θ′‖ and take λ =

√
nd and

ϑ = 1/
√
d . Then

P

{∫
Rdρ̃λ ≤ inf

θ
R(θ)

+

√
d

n

[
log(4ne2) + c

]
+

2 log
(

2
ε

)
√
nd

}
≥ 1− ε.

N.B : under margin assumption, possible to obtain d/n rates...
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Implementation : deterministic annealing

Algorithm 1 Deterministic annealing

Input (λt)t∈[0,T ] a sequence of temperature
Init. Set µ = 0 and Σ = ϑId , the values minimizing

KL-divergence for λ = 0
Loop t=1,. . .,T

a. µλt ,Σλt = Minimize F λt (m,Σ) using
some local optimization routine
(gradient descent) with initial points
µλt−1 ,Σλt−1

b. Break if the empirical bound
increases.

End Loop
Pierre Alquier Properties of Variational Approximations
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Test on real data

Dataset Covariates VB SMC SVM

Pima 7 21.3 22.3 30.4
Credit 60 33.6 32.0 32.0
DNA 180 23.6 23.6 20.4
SPECTF 22 06.9 08.5 10.1
Glass 10 19.6 23.3 4.7
Indian 11 25.5 26.2 26.8
Breast 10 1.1 1.1 1.7

Table: Comparison of misclassification rates (%). Last column :
kernel-SVM with radial kernel. The hyper-parameters λ and ϑ are
chosen by cross-validation.
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Convexification of the loss
Can replace the 0/1 loss by a convex surrogate at “no” cost :

Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex
risk minimization. Annals of Statistics.

R(θ) = E[(1− Yfθ(X ))+] (hinge loss).
rn(θ) = 1

n

∑n
i=1(1− Yi fθ(Xi))+.

Gaussian approx. : F =
{
N (µ, σ2I ), µ ∈ Rd , σ > 0

}
.

99K the following criterion (which turns out to be convex !) :

1
n

n∑
i=1

(1− Yi 〈µ,Xi〉) Φ

(
1− Yi 〈µ,Xi〉

σ‖Xi‖2

)
+
1
n

n∑
i=1

σ‖Xi‖ϕ
(
1− Yi 〈µ,Xi〉

σ‖Xi‖2

)
+
‖µ‖22
2ϑ

+
d

2

(
ϑ

σ2 − log σ2
)
.
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Application of the main theorem

Optimization with stochastic gradient descent on a ball of
radius M . On this ball, the objetive function is L-Lipschitz.
After k step, we have the approximation ρ̃(k)

λ of the posterior.

Corollary

Assume ‖X‖ ≤ cx a.s., take λ =
√
nd and ϑ = 1/

√
d . Then

P

{∫
Rdρ̃(k)

λ ≤ inf
θ
R(θ)

+
LM√
1 + k

+
cx
2

√
d

n
log
(n
d

)
+

c2x +1
2cx

+ 2cx log
(

2
ε

)
√
nd

}
≥ 1− ε.
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(One more) test on real data

Dataset Convex VB VB SMC SVM

Pima 21.8 21.3 22.3 30.4
Credit 27.2 33.6 32.0 32.0
DNA 4.2 23.6 23.6 20.4
SPECTF 19.2 06.9 08.5 10.1
Glass 26.1 19.6 23.3 4.7
Indian 26.2 25.5 26.2 26.8
Breast 0.5 1.1 1.1 1.7

Table: Comparison of misclassification rates (%), including the
convexified version of VB.
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Convergence graphs
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Figure: Stochastic gradient descent, Pima and Adult datasets.
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